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import numpy as np
import pandas as pd
import scipy.stats as stats
import matplotlib.pyplot as plt
import statsmodels.api as sm
import statsmodels.stats.proportion as smprop
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7.1 Categorical data

Until now we have mainly focused on continuous outcomes such as the height
of students. In many applications the outcome that we wish to study is cate-
gorical (7.1). For example, one could want to study the proportion of defective
components in a sample, hence the outcome has two categories: “defect” and
“non-defect”. Another example could be a study of the caffeine consumption
among different groups of university students, where the consumption could
be measured via a questionnaire in levels: none, 1-3 cups per day, more than 3
cups per day. Hence the categorical variable describing the outcome has three
categories.

In both examples the key is to describe the proportion of outcomes in each cate-
gory.

Remark 7.1

A variable is categorical if each outcome belongs to a category, which is one
of a set of categories.

7.2 Estimation of single proportions

We want to be able to find estimates of the population category proportions (i.e.
the “true” proportions). We sometimes refer to such a proportion as the proba-
bility of belonging to the category. This is simply because the probability that a
randomly sampled observation from the population belongs to the category, is
the proportion of the category in the population.

Example 7.2

In a survey in the US in 2000, 1154 people answered the question whether they
would be willing to pay more for petrol to help the environment. Of the 1154 par-
ticipants 518 answered that they would be willing to do so.

Our best estimate of the proportion of people willing to pay more (p) is the observed
proportion of positive answers

p̂ =
"Number of positive answers"
"Total number of participants"

=
518
1154

= 0.4489.
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This means that our best estimate of the proportion of people willing to pay more
for petrol to help the environment is 44.89%.

In the above example we can think of n = 1154 trials, where we each time have
a binary outcome (yes or no), occurring with the unknown probability p. The
random variable X counts the number of times we get a yes to the question,
hence X follows a binomial distribution B(n, p) with the probability of observ-
ing x successes given by

P(X = x) =
(

n
x

)
px(1 − p)n−x. (7-1)

As mentioned in Example 7.2, our best estimate of the unknown p is the pro-
portion

p̂ =
x
n

, p̂ ∈ [0, 1]. (7-2)

From Chapter 2 we know that if X ∼ B(n, p), then

E(X) = np, (7-3)
V(X) = np(1 − p). (7-4)

This means that

E( p̂) = E
(

X
n

)
=

np
n

= p, (7-5)

V( p̂) = V
(

X
n

)
=

1
n2 V(X) =

p(1 − p)
n

. (7-6)

From Equation (7-5) we see that p̂ is an unbiased estimator of the unknown p
and from Equation (7-6) that the standard error (the (sampling) standard devi-

ation) of p̂ is σp̂ =
√

p(1−p)
n . It is important to quantify the uncertainty of the

calculated estimate using confidence intervals. For large samples, the Central
Limit Theorem gives us that the sample proportion p̂ is well approximated by
a normal distribution, and thus a (1 − α)100% confidence interval for the pop-
ulation proportion p is

p̂ ± z1−α/2 σp̂. (7-7)

However, σp̂ depends on the unknown p, which we do not know. In practice
we will have to estimate the standard error by substituting the unknown p by
the estimate p̂.
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Method 7.3 Proportion estimate and confidence interval

The best estimate of the probability p of belonging to a category (the popu-
lation proportion) is the sample proportion

p̂ =
x
n

, (7-8)

where x is the number of observations in the category and n is the total
number of observations.

A large sample (1 − α)100% confidence interval for p is given as

p̂ ± z1−α/2

√
p̂(1 − p̂)

n
. (7-9)

Remark 7.4

As a rule of thumb the normal distribution is a good approximation of the
binomial distribution if np and n(1 − p) are both greater than 15.

Example 7.5

In the figure below we have some examples of binomial distributions. When we
reach a size where np ≥ 15 and n(1 − p) ≥ 15 it seems reasonable that the bell-
shaped normal distribution will be a good approximation.
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Example 7.6

If we return to the survey in Example 7.2, we can now calculate the 95% confidence
interval for the probability (i.e. the proportion willing to pay more for petrol to help
the environment).

We found the estimate of p by the observed proportion to p̂ = 518
1154 = 0.45. The

standard error of the proportion estimate is

σ̂p̂ =
√

p̂(1 − p̂)/n =
√

0.45 · 0.55/1154 = 0.0146.

Since we have np̂ = 1154 · 0.45 = 519.3 and n(1 − p̂) = 1154 · 0.55 = 634.7, both
greater than 15, we can use the expression from Method 7.3 to get the 95% confidence
interval

p̂ ± 1.96 · σ̂p̂ = 0.45 ± 1.96 · 0.0146 = [0.42, 0.48].

From this we can now conclude that our best estimate of the proportion willing to
pay more for petrol to protect the environment is 0.45, and that the true proportion
with 95% certainty is between 0.42 and 0.48. We see that 0.5 is not included in the
confidence interval, hence we can conclude that the proportion willing to pay more
for petrol is less than 0.5 (using the usual α = 0.05 significance level). We will cover
hypothesis testing for proportions more formally below.



Chapter 7 7.2 ESTIMATION OF SINGLE PROPORTIONS 5

Remark 7.7 What about small samples then?

There exist several ways of expressing a valid confidence interval for p in
small sample cases, that is, when either np ≤ 15 or n(1 − p) ≤ 15. We men-
tion three of these here - only for the last one we give the explicit formula:

Continuity correction

The so-called continuity correction is a general approach to making the
best approximation of discrete probabilities (in this case the binomial
probabilities) using a continuous distribution, (in this case the normal
distribution). We do not give any details here.

Exact intervals

Probably the most well known of such small sample ways of ob-
taining a valid confidence interval for a proportion is the so-called
exact method based on actual binomial probabilities rather than a
normal approximation. It is not possible to give a simple formula
for these confidence limits, and we will not explain the details here,
but simply note that they can be obtained by the Python function
stats.binomtest. These will be valid no matter the size of n and p.

“Plus 2”-approach

Finally, a simple approach to a good small sample confidence inter-
val for a proportion, will be to us the simple formula given above in
Method 7.3, but applied to x̃ = x + 2 and ñ = n + 4.

Remark 7.8 Confidence intervals for single proportions in Python

In Python we can either use the function smprop.proportions_ztest or
stats.binomtest to find the confidence interval of a single proportion (and
some hypothesis testing information to be described below).

The stats.binomtest function uses the exact approach. The
smprop.proportions_ztest does not use continuity correction, but as-
sumes normality.
Therefore: none of these intervals calculated by Python coincides exactly
with the formula given in Method 7.3, neither applied to x and n nor ap-
plied to x̃ = x + 2 and ñ = n + 4. And vice versa: the exact computational
details of the different intervals calculated by Python are not given in the text
here.
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7.2.1 Testing hypotheses

Hypothesis testing for a single proportion (or probability) p is presented in this
section.

The first step is to formulate the null hypothesis and the alternative as well as
choosing the level of significance α. The null hypothesis for a proportion has
the form

H0 : p = p0 (7-10)

where p0 is a chosen value between 0 and 1. In Example 7.2, we could be in-
terested in testing whether half of the population, from which the sample was
taken, would be willing to pay more for petrol, hence p0 = 0.5.

The alternative hypothesis is the two-sided alternative

H1 : p ̸= p0. (7-11)

Remark 7.9

As for the t-tests presented in Chapter 3, we can also have one-sided tests
for proportions, i.e. the “less than” alternative

H0 : p ≥ p0 (7-12)
H1 : p < p0, (7-13)

and the “greater than” alternative

H0 : p ≤ p0 (7-14)
H1 : p > p0, (7-15)

however these are not included further in the material, see the discussion in
Section 3.1.7 (from page 145 in the book), which applies similarly here.

The next step is to calculate a test statistic as a measure of how well our data fits
the null hypothesis. The test statistic measures how far our estimate p̂ is from
the value p0 relative to the uncertainty – under the scenario that H0 is true.
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So, under H0 the true proportion is p0 and the standard error is
√

p0(1 − p0)/n,
thus to measure the distance between p̂ and p0 in standard deviations we cal-
culate the test statistic

zobs =
x − np0√

np0(1 − p0)
. (7-16)

When H0 is true, the test statistic seen as a random variable is

Z =
p̂ − p0√

p0(1 − p0)/n
=

X − np0√
np0(1 − p0)

, (7-17)

and follows approximately a standard normal distribution Z ∼ N(0, 1), when
n is large enough:

Theorem 7.10

In the large sample case the random variable Z follows approximately a
standard normal distribution

Z =
X − np0√

np0(1 − p0)
∼ N(0, 1), (7-18)

when the null hypothesis is true. As a rule of thumb, the result will be valid
when both np0 > 15 and n(1 − p0) > 15 .

We can use this to make the obvious explicit method for the hypothesis test:
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Method 7.11 One sample proportion hypothesis test

1. Compute the test statistic using Equation (7-16)

zobs =
x − np0√

np0(1 − p0)

2. Compute evidence against the null hypothesis

H0 : p = p0, (7-19)

vs. the the alternative hypothesis

H1 : p ̸= p0, (7-20)

by the

p-value = 2 · P(Z > |zobs|). (7-21)

where the standard normal distribution Z ∼ N(0, 12) is used

3. If the p-value < α we reject H0, otherwise we accept H0,

or

The rejection/acceptance conclusion can equivalently be based on the
critical value(s) ±z1−α/2:
if |zobs| > z1−α/2 we reject H0, otherwise we accept H0

Example 7.12

To conclude Example 7.2 we want to test the null hypothesis

H0 : p = 0.5,

against the alternative

H1 : p ̸= 0.5.

We have chosen α = 0.05, hence the critical value is the 0.975 quantile in the stan-
dard normal distribution z1−α/2 = 1.96. Thus we get the observed value of the test
statistic by

zobs =
518 − 577√

1154 · 0.5 · (1 − 0.5)
= −3.47.
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Since z = −3.47 < −1.96 then we reject H0. The p-value is calculated as the proba-
bility of observing zobs or more extreme under the null hypothesis

2 · P(Z ≥ 3.47) = 0.0005.

We can get this directly using Python:

# Testing the probability = 0.5 with a two-sided alternative
# We have observed 518 out of 1154
# Do it without continuity corrections
z_obs,p_value = smprop.proportions_ztest(518, 1154, value=0.5,
prop_var=0.5)
print(z_obs)

-3.473594375515837

print(p_value)

0.0005135367279608199

Note that the results are exactly the same as when calculated by hand even though
the test statistic used is actually Z2 ∼ χ2 with one degree of freedom, since this is
the same as saying Z ∼ N(0, 1). This is explained in detail later in the chapter.

7.2.2 Sample size determination

Before conducting a study, it is important to consider the sample size needed to
achieve a wanted precision. In the case with a single probability to estimate, we
see that the error we make when using the estimator p̂ = x

n is given by
∣∣ x

n − p
∣∣.

Using the normal approximation (see Theorem 7.3) we can conclude that the
error will be bounded by

∣∣∣ x
n
− p

∣∣∣ < z1−α/2

√
p(1 − p)

n
, (7-22)

with probability 1 − α. Thus the Margin of Error (ME) of the estimate becomes

ME = z1−α/2

√
p(1 − p)

n
. (7-23)

Similar to the method given for quantitative data in Method 3.63, we can use
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Equation (7-23) to determine the needed sample size in a single proportions
setup. Solving for n we get:

Method 7.13 Sample size formula for the CI of a proportion

Given some “guess” (scenario) of the size of the unknown p, and given some
requirement to the ME-value (required expected precision) the necessary
sample size is then

n = p(1 − p)
(z1−α/2

ME

)2
. (7-24)

If p is unknown, a worst case scenario with p = 1/2 is applied and necessary
sample size is

n =
1
4

(z1−α/2

ME

)2
. (7-25)

The expression in Equation (7-25) for n when no information about p is available
is due to the fact that p(1− p) is largest for p = 1/2, so the required sample size
will be largest when p = 1/2.

Method 7.13 can be used to calculate the sample size for a given choice of ME.

7.3 Comparing proportions in two populations

For categorical variables we sometimes want to compare the proportions in two
populations (groups). Let p1 denote the proportion in group 1 and p2 the pro-
portion in group 2. We will compare the groups by looking at the difference in
proportions p1 − p2, which is estimated by p̂1 − p̂2.

Example 7.14

In a study in the US (1975) the relation between intake of contraceptive pills (birth
control pills) and the risk of blood clot in the heart was investigated. The following
data were collected from a participating hospital:

Contraceptive pill No pill
Blood clot 23 35
No blood clot 34 132
Total 57 167
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We have a binary outcome blood clot (yes or no) and two groups (pill or no pill). As
in Section 7.2 we find that the best estimates of the unknown probabilities are the
observed proportions

p̂1 =
"Number of blood clots in the pill group"

"Number of women in the pill group"
=

23
57

= 0.4035, (7-26)

p̂2 =
"Number of blood clots in the no pill group"

"Number of women in the no pill group"
=

35
167

= 0.2096. (7-27)

The difference in probabilities is estimated to be

p̂1 − p̂2 = 0.4035 − 0.2096 = 0.1939. (7-28)

Thus the observed probability of getting a blood clot, was 0.1939 higher in the con-
traceptive pill group than in the no pill group.

We have the estimate p̂1 − p̂2 of the difference in probabilities p1 − p2 and the
uncertainty of this estimate can be calculated by:

Method 7.15

An estimate of the standard error of the estimator p̂1 − p̂2 is

σ̂p̂1− p̂2 =

√
p̂1(1 − p̂1)

n1
+

p̂2(1 − p̂2)

n2
. (7-29)

The (1 − α)100% confidence interval for the difference p1 − p2 is

( p̂1 − p̂2)± z1−α/2 · σ̂p̂1− p̂2 . (7-30)

This confidence interval requires independent random samples for the two
groups and large enough sample sizes n1 and n2. A rule of thumb is that
ni pi ≥ 10 and ni(1 − pi) ≥ 10 for i = 1, 2, must be satisfied.
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Remark 7.16

The standard error in Method 7.15 can be calculated by

V( p̂1 − p̂2) = V( p̂1) + V( p̂2) = σ̂2
p̂1
+ σ̂2

p̂2
, (7-31)

σ̂p̂1− p̂2 =
√

V( p̂1 − p̂2) =
√

σ̂2
p̂1
+ σ̂2

p̂2
. (7-32)

Notice, that the standard errors are added (before the square root) such that
the standard error of the difference is larger than the standard error for the
observed proportions alone. Therefore in practice the estimate of the differ-
ence p̂1 − p̂2 will often be further from the true difference p1 − p2 than p̂1
will be from p1 or p̂2 will be from p2.

Example 7.17

Returning to Example 7.14 where we found the estimated difference in probability
to be

p̂1 − p̂2 = 0.4035 − 0.2096 = 0.1939. (7-33)

The estimated standard error of the estimate is

σ̂p̂1− p̂2 =

√
0.4035(1 − 0.4035)

57
+

0.2096(1 − 0.2096)
167

= 0.0722. (7-34)

A 99% confidence interval for this difference is then

( p̂1 − p̂2)± z0.995 · σ̂p̂1− p̂2 = 0.1939 ± 2.5758 · 0.0722 = [0.0079, 0.3799]. (7-35)

Hence our best estimate of the difference is 0.19 and with very high confidence the
true difference is between 0.008 and 0.38.

We find that 0 is not included in the confidence interval, so 0 is not a plausible value
for the difference p1 − p2. The values in the confidence interval are all positive and
therefore we can conclude that (p1 − p2) > 0, that is p1 > p2, i.e. the probability of
blood clot is larger in the contraceptive pill group than in the no pill group.

We can also compare the two proportions p1 and p2 using a hypothesis test. As
in Method 7.11, there are four steps when we want to carry out the test. The
first step is to formulate the hypothesis and the alternative.

The null hypothesis is H0 : p1 = p2 and we will denote the common proportion
p, and choose a two-sided alternative H1 : p1 ̸= p2.
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In the second step we calculate a test statistic measuring how far p̂1 − p̂2 falls
from 0, which is the value of p1 − p2 under H0.

Under H0, we only have one proportion p (since p1 = p2 = p). The best estima-
tor for this common proportion is the overall observed proportion

p̂ =
x1 + x2

n1 + n2
. (7-36)

When the two sample sizes n1 and n2 are similar, this pooled estimate of the
overall proportion will be approximately half way between p̂1 and p̂2, but oth-
erwise the pooled estimate will be closest to the estimate from the largest sample
size.

Method 7.18 Two sample proportions hypothesis test

The two-sample hypothesis test for comparing two proportions is given by
the following procedure:

1. Compute, with p̂ = x1+x2
n1+n2

, the test statistic

zobs =
p̂1 − p̂2√

p̂(1 − p̂)
(

1
n1

+ 1
n2

) (7-37)

2. Compute evidence against the null hypothesis

H0 : p1 = p2, (7-38)

vs. the the alternative hypothesis

H1 : p1 ̸= p2, (7-39)

by the

p-value = 2 · P(Z > |zobs|). (7-40)

where the standard normal distribution Z ∼ N(0, 12) is used

3. If the p-value < α we reject H0, otherwise we accept H0,

or

The rejection/acceptance conclusion can equivalently be based on the
critical value(s) ±z1−α/2:
if |zobs| > z1−α/2 we reject H0, otherwise we accept H0
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Example 7.19

In Example 7.17 we tested whether the probability of blood clot is the same for the
group taking the pills as for the group without pills using the CI. The null hypothesis
and alternative are

H0 : p1 = p2,

H1 : p1 ̸= p2.

This time we will test on a 1% significance level (α = 0.01).

The pooled estimate of the probability of blood clot under H0 is

p̂ =
23 + 35

57 + 167
= 0.259,

which is closest to the estimate from the largest group p̂2 = 0.210.

According to Method 7.15 the test statistic is

zobs =
p̂1 − p̂2√

p̂(1 − p̂)( 1
n1

+ 1
n2
)
=

0.194√
0.259(1 − 0.259)( 1

57 +
1

167 )
= 2.89.

The p-value is calculated by looking up zobs in a standard normal distribution (i.e.
N(0, 1))

2P(Z ≥ 2.89) = 0.0039 < 0.01.

As the p-value is less than 0.01 we can reject the null hypothesis of equal probabili-
ties in the two groups.

Instead of doing all the calculations in steps, we can use the function
smprop.proportions_ztest() to test the hypothesis.

# Testing that the probabilities for the two groups are equal
z_obs, p_val = smprop.proportions_ztest([23, 35], [57, 167], value=0,
prop_var=0)
print(z_obs)

2.8859712586466184

print(p_val)

0.003902077897925702
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7.4 Comparing several proportions

In the previous Section 7.3, we were interested in comparing proportions from
two groups. In some cases we might be interested in proportions from two
or more groups, or in other words if several binomial distributions share the
same parameter p. The data can be setup in a 2 × c table, where "Success" is the
response we are studying (e.g. a blood clot occurs) and "Failure" is when the
response does not occur (e.g. no blood clot).

Group 1 Group 2 ... Group c Total
Success x1 x2 ... xc x
Failure n1 − x1 n2 − x2 ... nc − xc n − x

Total n1 n2 ... nc n

We are then interested in testing the null hypothesis

H0 : p1 = p2 = . . . = pc = p (7-41)

against the alternative hypothesis: that the probabilities are not equal (or more
precisely: that that at least one of the probabilities is different from the others).

Under H0 the best estimator for the common p is the overall observed propor-
tion

p̂ =
x
n

. (7-42)

To test the null hypothesis, we need to measure how likely it is to obtain the
observed data (or more extreme) under the null hypothesis. So, under the sce-
nario that the null hypothesis is true, we can calculate the expected number of
successes in the jth group as

e1j = nj · p̂ = nj ·
x
n

, (7-43)

and the expected number of failures is

e2j = nj · (1 − p̂) = nj ·
(n − x)

n
. (7-44)

Notice, that the expected number for a cell is calculated by multiplying the row
and column totals for the row and column, where the cell belongs and then
dividing by the grand total n.
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Method 7.20 The multi-sample proportions χ2-test

The hypothesis

H0 : p1 = p2 = . . . = pc = p, (7-45)

can be tested using the test statistic

χ2
obs =

2

∑
i=1

c

∑
j=1

(oij − eij)
2

eij
, (7-46)

where oij is the observed number in cell (i, j) and eij is the expected number
in cell (i, j).

The test statistic χ2
obs should be compared with the χ2-distribution with c− 1

degrees of freedom.

The χ2-distribution is approximately the sampling distribution of the statis-
tics under the null hypothesis. The rule of thumb is that it is valid when all
the computed expected values are at least 5: eij ≥ 5.

The test statistic in Method 7.20 measures the distance between the observed
number in a cell and what we would expect if the null hypothesis is true. If the
hypothesis is true then χ2 has a relatively small value, as most of the cell counts
will be close to the expected values. If H0 is false, some of the observed values
will be far from the expected resulting in a larger χ2.

Example 7.21

Returning to Example 7.19 we can consider a 2 × 2 table as a case of a 2 × c table.
We can organize our table with "Success" and "Failure" in the rows and groups as
the columns.

Contraceptive pill No pill Total
Blood clot 23 35 58
No blood clot 34 132 166
Total 57 167 224

Here x = 23 + 35 = 58 and n = 224

For each cell we can now calculate the expected number if H0 is true. For the pill
and blood clot cell we get

e1,1 =
58 · 57

224
= 14.76, (7-47)
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but we only observed 23 cases.

For the no pill and blood clot cell we get

e1,2 =
58 · 167

224
= 43.24, (7-48)

which is more than the observed 35 cases.

In the following table we have both the observed and expected values.

Birth control pill No birth control pill Total
Blood clot o11 = 23 o12 = 35 x = 58

e11 = 14.76 e12 = 43.24
No blood clot o21 = 34 o22 = 132 (n − x) = 166

e21 = 42.24 o22 = 123.8
Total n1 = 57 n2 = 167 n = 224

The observed χ2 test statistic can be calculated

χ2
obs =

(23 − 14.76)2

14.76
+

(35 − 43.24)2

43.24
+

(34 − 42.24)2

42.24
+

(132 − 123.8)2

123.8
= 8.33.

(7-49)

We then find the p-value, by calculating how likely it is to get 8.33 or more extreme if
the null hypothesis is true, using the χ2 distribution with c − 1 = 2 − 1 = 1 degrees
of freedom

p-value = P(χ2 ≥ 8.33) = 0.0039, (7-50)

which is exactly the same as the result in Example 7.14. Do the same with the
stats.chi2_contingency() function in Python:
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# Reading the data into Python
pill_study = np.array([[23, 35], [34, 132]])
# Using Pandas
pill_study = pd.DataFrame(pill_study, index=[’Blood Clot’, ’No Clot’],
columns=[’Pill’, ’No pill’])
print(pill_study)

Pill No pill
Blood Clot 23 35
No Clot 34 132

# Chi^2 test for testing that the distribution for the two groups are
equal
chi2, p_val, dof, expected = stats.chi2_contingency(pill_study,
correction=False)
# Test Statistic
print(chi2)

8.328830105734347

# P value
print(p_val)

0.0039020778979257016

# Degrees of freedom
print(dof)

1

# Expected frequencies under the null hypothesis
# Output will not be pandas DataFrame, but we can use pandas to display
it nicely
print(pd.DataFrame(expected, index=[’Blood Clot’, ’No Clot’],
columns=[’Pill’, ’No pill’]))

Pill No pill
Blood Clot 14.758929 43.241071
No Clot 42.241071 123.758929
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In Section 7.3 we presented a z-test for the hypothesis H0 : p1 = p2, where

zobs =
p̂1 − p̂2√

p̂(1 − p̂)( 1
n1

+ 1
n2
)

,

and in this section we have just seen a χ2 test that can also be used for 2 × 2
tables. Using some algebra it turns out that the two tests are equivalent

χ2
obs = z2

obs, (7-51)

and they give exactly the same p-value for testing H0 : p1 = p2 against H1 :
p1 ̸= p2.

7.5 Analysis of Contingency Tables

Until now we have been looking at 2 × c tables, but we can also have a more
general setup with r × c tables that arise when two categorical variables are
cross-tabulated. Such tables usually arise from two kinds of studies. First, we
could have samples from several groups (as in Section 7.4), but allowing for
more than two outcome categories. An example of this could be an opinion poll,
where three samples were taken at different time points by asking randomly
selected people whether they supported either: Candidate 1, Candidate 2 or
were undecided. Here we want to compare the distribution of votes for the
three groups (i.e. over time).

The other setup giving rise to an r × c table is when we have samples with two
paired categorical variables with same categories (i.e. both variables are mea-
sured on each observational unit). This might happen if we had a sample of
students and categorized them equivalently according to their results in En-
glish and mathematics (e.g. good, medium, poor). These tables are also called
contingency tables.

The main difference between the two setups is: in the first setup the column
totals are the size of each sample (i.e. fixed to the sample sizes), whereas in the
second setup the column totals are not fixed (i.e. they count outcomes and the
grand total is fixed to the sample size). However, it turns out that both setups
are analysed in the same way.
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7.5.1 Comparing several groups

In the situation comparing several groups, the hypothesis is that the distribu-
tion is the same in each group

H0 : pi1 = pi2 = . . . = pic = pi, for all rows i = 1, 2, . . . , r. (7-52)

So the hypothesis is that the probability of obtaining an outcome in a row cate-
gory does not depend on the given column.

As in Section 7.4 we need to calculate the expected number in each cell under
H0

eij = "jth column total" · "ith row total"
"grand total"

= nj ·
xi

n
. (7-53)

Method 7.22 The r × c frequency table χ2-test

For an r × c table the hypothesis

H0 : pi1 = pi2 = . . . = pic = pi, for all rows i = 1, 2, . . . , r, (7-54)

is tested using the test statistic

χ2
obs =

r

∑
i=1

c

∑
j=1

(oij − eij)
2

eij
. (7-55)

where oij is the observed number in cell (i, j) and eij is the expected number
in cell (i, j). This test statistic should be compared with the χ2-distribution
with (r − 1)(c − 1) degrees of freedom and the hypothesis is rejected at sig-
nificance level α if

χ2
obs > χ2

1−α

(
(r − 1)(c − 1)

)
. (7-56)

From Method 7.22, we see that we use the same test statistic as for 2 × c tables
measuring the distance between the observed and expected cell counts. The
degrees of freedom (r − 1)(c − 1) occurs because only (r − 1)(c − 1) of the ex-
pected values eij need to be calculated – the rest can be found by subtraction
from the relevant row or column totals.
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Example 7.23

An opinion poll has been made at three time points (4 weeks, 2 weeks and 1 week
before the election) each time 200 participants was asked who they would vote for:
Candidate 1, Candidate 2 or were undecided. The following data was obtained:

4 weeks before 2 weeks before 1 week before Row total
Candidate 1 79 91 93 263
Candidate 2 84 66 60 210
Undecided 37 43 47 127
Column total 200 200 200 600

Note, that in this poll example the sample sizes are equal (i.e. n1 = n2 = n3 = 200),
however that is not a requirement.

We want to test the hypothesis that the votes are equally distributed in each of the
three polls

H0 : pi1 = pi2 = pi3, for all rows i = 1, 2, 3. (7-57)

The expected number of votes under H0 is calculated for the "Candidate 2" - "2 weeks
before" cell of the table

e22 = "2’nd column total" · "2’nd row total"
"grand total"

=
210 · 200

600
= 70. (7-58)

Continuing in the same way we can calculate all the expected cell counts:

4 weeks before 2 weeks before 1 week before
Candidate 1 o11 = 79 o12 = 91 o13 = 93

e11 = 87.67 e12 = 87.67 e13 = 87.67
Candidate 2 o21 = 84 o22 = 66 o23 = 60

e21 = 70.00 e22 = 70.00 e23 = 70.00
Undecided o31 = 37 o32 = 43 o33 = 47

e31 = 42.33 e32 = 42.33 e33 = 42.33

Looking at this table, it seems that 4 weeks before, Candidate 1 has less votes than
expected while Candidate 2 has more, but we need to test whether these differences
are statistically significant.

We can test the hypothesis in Equation (7-52) using a χ2 test with (3 − 1)(3 − 1) = 4
degrees of freedom.
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However, first we will calculate the observed column percentages and plot them:

Cand1 Cand2 Undecided

Distribution of Votes

Candidate
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From the bar plot it could seem that the support for Candidate 2 decreases as the
election approaches, but we need to test whether this is significant. In the following
Python code the hypothesis, stating that the distribution at each time point is the
same, is tested:
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# Reading the data into Python
poll = np.array([[79, 91, 93], [84, 66, 60], [37, 43, 47]])
poll = pd.DataFrame(poll, index=[’Cand1’, ’Cand2’, ’Undecided’],

columns=[’4 weeks’, ’2 weeks’, ’1 week’])

# testing same distribution in the three populations
chi2, p_val, dof, expected = stats.chi2_contingency(poll,
correction=False)
# Test statistic
print(chi2)

6.961978041718169

# p-value
print(p_val)

0.1379112060673381

# Degrees of Freedom
print(dof)

4

# Expected frequencies under the null hypothesis
print(pd.DataFrame(expected, index=[’Cand1’, ’Cand2’, ’Undecided’],

columns=[’4 weeks’, ’2 weeks’, ’1 week’]))

4 weeks 2 weeks 1 week
Cand1 87.666667 87.666667 87.666667
Cand2 70.000000 70.000000 70.000000
Undecided 42.333333 42.333333 42.333333

From the χ2 test we get an observed test statistic of 6.96, and we must now calculate
how likely it is to obtain this value or more extreme from a χ2-distribution with 4
degrees of freedom. It leads to a p-value of 0.14, so we accept the null hypothesis
and find that there is no evidence showing a change in distribution among the three
polls.
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7.5.2 Independence between the two categorical variables

When the only fixed value is the grand total, then the hypothesis we are inter-
ested in concerns independence between the two categorical variables

H0 : "The two variables are independent",
H1 : "The two variables are not independent (they are associated)".

(7-59)

Using the cell proportions pij the null hypothesis can be written as:

Theorem 7.24

To test if two categorical variables are independent the null hypothesis

H0 : pij = pi.p.j for all i, j, (7-60)

where pi. = ∑c
j=1 pij is the proportion of row i and p.j = ∑r

i=1 pij is the
proportion of column j, is tested.

The p-value for the observed result under this null hypothesis is calculated
using the χ2 test statistic from Method 7.22.

Example 7.25

A group of 400 students have had an English test and a mathematics test. The results
of each test a categorized as either bad, average or good.

English Mathematics
Bad Average Good Row total

Bad 23 60 29 112
Average 28 79 60 167
Good 9 49 63 121
Column total 60 188 152 400

We want to test the hypothesis of independence between results in English and
mathematics. First we read the data into Python and calculate proportions and totals:
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# Reading the data into Python
results = np.array([[23, 60, 29], [28, 79, 60], [9, 49, 63]])
results_df = pd.DataFrame(results, index=[’EngBad’, ’EngAve’,
’EngGood’],

columns=[’MathBad’, ’MathAve’,
’MathGood’])

# Percentages
prop = results_df/results_df.sum().sum()
print(prop)

MathBad MathAve MathGood
EngBad 0.0575 0.1500 0.0725
EngAve 0.0700 0.1975 0.1500
EngGood 0.0225 0.1225 0.1575

# Row totals
print(results_df.sum(axis=1))

EngBad 112
EngAve 167
EngGood 121
dtype: int64

# Column totals
print(results_df.sum(axis=0))

MathBad 60
MathAve 188
MathGood 152
dtype: int64

We want to calculate the expected cell count if H0 is true. Consider the events "good
English result" and "good mathematics result" corresponding to cell (3, 3). Under
the hypothesis of independence, we have

p33 = P("Good English and Good Maths") = P("Good English") · P("Good Maths")
(7-61)

From the calculated row and column totals, we would estimate

p̂33 =

(
121
400

)
·
(

152
400

)
, (7-62)
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and out of 400 students we would expect

e33 = 400 · p̂33 = 400 ·
(

121
400

)
·
(

152
400

)
= 121 · 152

400
= 45.98. (7-63)

The method of calculating the expected cell counts is exactly as before. For the
“Good English and Good Mathematics” cell the expected value is less than the ob-
served 63. Continuing in this way, we can calculate all the expected cell counts:

English Mathematics
Bad Average Good

Bad o11 = 23 o12 = 60 o13 = 29
e11 = 16.80 e12 = 52.64 e13 = 42.56

Average o21 = 28 o22 = 79 o23 = 60
e21 = 25.05 e22 = 78.49 e23 = 63.46

Good o31 = 9 o32 = 49 o33 = 63
e31 = 18.15 e32 = 56.87 e33 = 45.98

We can see that we have more students than expected in the Good - Good cell and
less than expected in the two Bad - Good cells. We can now test the hypothesis of
independence between English and mathematics results:
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# Testing independence between english and maths results
chi2, p, dof, expected = stats.chi2_contingency(results,
correction=False)
# Test statistic
print(chi2)

20.178903582087926

# p-value
print(p)

0.00046038041384262443

# Degrees of Freedom
print(dof)

4

# Expected frequencies under the null hypothesis
print(pd.DataFrame(expected, index=[’EngBad’, ’EngAve’, ’EngGood’],

columns=[’MathBad’, ’MathAve’, ’MathGood’]))

MathBad MathAve MathGood
EngBad 16.80 52.64 42.56
EngAve 25.05 78.49 63.46
EngGood 18.15 56.87 45.98

The χ2-test gives a test statistic of 20.18, which under H0 follows a χ2-distribution
with 4 degrees of freedom leading to a p-value of 0.0005. This means that the hy-
pothesis of independence between English and mathematics results is rejected.

Even though the hypothesis were formulated differently in the first setup when
comparing several groups, compared to the second setup with the hypothesis on
independence of two categorical variables, it turns out that the first hypothesis (7-52)
is also about independence. Two events are independent if

P(A and B) = P(A) · P(B), (7-64)

which expresses: the probability of both event A and event B occurring is equal
to the probability of event A occurring times the probability of event B occuring.
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Another way of defining independence of two variables is through condition-
ing. Two events are independent if

P(A|B) = P(A), (7-65)

which states: the probability of event A does not change if we have informa-
tion about B. In the first Example 7.23 the probability of voting for Candidate
1 is the same irrespective of week and therefore the distribution in one week is
independent of the results from the other weeks.
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Glossaries

Alternative hypothesis [Alternativ hypotese] The alternative hypothesis (H1)
is oftern the negation of the null hypothesis 6, 15

Binomial distribution [Binomial fordeling] If an experiment has two possible
outcomes (e.g. failure or success, no or yes, 0 or 1) and is repeated more
than one time, then the number of successes is binomial distributed 2, 3,
15

χ2-distribution [χ2-fordeling (udtales: chi-i-anden fordeling)] 20

Continuity correction The so-called Continuity correction is a general approach
to make the best approximation of discrete probabilities 5

Critical value Kritisk værdi As an alternative to the p-value one can use the so-
called critical values, that is the values of the test-statistic which matches
exactly the significance level 8, 13

Degrees of freedom [Frihedsgrader] The number of "observations" in the data
that are free to vary when estimating statistical parameters often defined
as n − 1 16, 17, 20, 21, 23, 27

Independence [Uafhængighed] 24–28

Null hypothesis [Nulhypotese (H0)] 6–8, 12–17, 23, 24

One-sided (test) [Énsidet test] Is also called directional (test) 6

P-value [p-værdi (for faktisk udfald af en teststørrelse)] 9, 14, 17, 19, 23, 24, 27

Standard normal distribution [Standardiseret normalfordeling ( N(0, 1))] 8

Two-sided (test) [Tosidet test (test med tosidet alternativ)] Is also called non-
directional (test) 6, 12
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Acronyms

ANOVA Analysis of Variance Glossary: Analysis of Variance

cdf cumulated distribution function Glossary: cumulated distribution function

CI confidence interval 2, 4, 5, 11, 12, Glossary: confidence interval

CLT Central Limit Theorem Glossary: Central Limit Theorem

IQR Inter Quartile Range Glossary: Inter Quartile Range

LSD Least Significant Difference Glossary: Least Significant Difference

pdf probability density function Glossary: probability density function
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